extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C22×C4)⋊1C2 = C2×C4⋊D20 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):1C2 | 320,1178 |
(D5×C22×C4)⋊2C2 = C42⋊8D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):2C2 | 320,1196 |
(D5×C22×C4)⋊3C2 = D5×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):3C2 | 320,1276 |
(D5×C22×C4)⋊4C2 = C4⋊C4⋊21D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):4C2 | 320,1278 |
(D5×C22×C4)⋊5C2 = C4⋊C4⋊26D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):5C2 | 320,1299 |
(D5×C22×C4)⋊6C2 = C2×C20⋊2D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):6C2 | 320,1472 |
(D5×C22×C4)⋊7C2 = (C2×C20)⋊15D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):7C2 | 320,1500 |
(D5×C22×C4)⋊8C2 = C22×D4×D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):8C2 | 320,1612 |
(D5×C22×C4)⋊9C2 = C22×D4⋊2D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):9C2 | 320,1613 |
(D5×C22×C4)⋊10C2 = C22×Q8⋊2D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):10C2 | 320,1616 |
(D5×C22×C4)⋊11C2 = C2×D5×C4○D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):11C2 | 320,1618 |
(D5×C22×C4)⋊12C2 = (C2×C4)⋊9D20 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):12C2 | 320,292 |
(D5×C22×C4)⋊13C2 = C24.12D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):13C2 | 320,583 |
(D5×C22×C4)⋊14C2 = C2×C4×D20 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):14C2 | 320,1145 |
(D5×C22×C4)⋊15C2 = C2×D5×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):15C2 | 320,1156 |
(D5×C22×C4)⋊16C2 = C2×Dic5⋊4D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):16C2 | 320,1157 |
(D5×C22×C4)⋊17C2 = C2×D10.12D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):17C2 | 320,1160 |
(D5×C22×C4)⋊18C2 = C2×D10⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):18C2 | 320,1161 |
(D5×C22×C4)⋊19C2 = C2×D20⋊8C4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):19C2 | 320,1175 |
(D5×C22×C4)⋊20C2 = C2×D10.13D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):20C2 | 320,1177 |
(D5×C22×C4)⋊21C2 = C4×D4×D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):21C2 | 320,1216 |
(D5×C22×C4)⋊22C2 = C42⋊12D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):22C2 | 320,1219 |
(D5×C22×C4)⋊23C2 = D5×C22.D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):23C2 | 320,1324 |
(D5×C22×C4)⋊24C2 = C4⋊C4⋊28D10 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4):24C2 | 320,1328 |
(D5×C22×C4)⋊25C2 = C2×C4×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):25C2 | 320,1460 |
(D5×C22×C4)⋊26C2 = C22×C4○D20 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4):26C2 | 320,1611 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C22×C4).1C2 = D10⋊4(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).1C2 | 320,614 |
(D5×C22×C4).2C2 = D10⋊8M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).2C2 | 320,753 |
(D5×C22×C4).3C2 = C2×D5×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).3C2 | 320,1173 |
(D5×C22×C4).4C2 = C2×C4⋊C4⋊7D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).4C2 | 320,1174 |
(D5×C22×C4).5C2 = C2×D10⋊2Q8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).5C2 | 320,1181 |
(D5×C22×C4).6C2 = D5×C42⋊C2 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).6C2 | 320,1192 |
(D5×C22×C4).7C2 = D5×C22⋊Q8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).7C2 | 320,1298 |
(D5×C22×C4).8C2 = C2×D5×M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).8C2 | 320,1415 |
(D5×C22×C4).9C2 = C2×D10⋊3Q8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).9C2 | 320,1485 |
(D5×C22×C4).10C2 = C22×Q8×D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).10C2 | 320,1615 |
(D5×C22×C4).11C2 = D5×C2.C42 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).11C2 | 320,290 |
(D5×C22×C4).12C2 = C22.58(D4×D5) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).12C2 | 320,291 |
(D5×C22×C4).13C2 = D10⋊2C42 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).13C2 | 320,293 |
(D5×C22×C4).14C2 = D10⋊2(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).14C2 | 320,294 |
(D5×C22×C4).15C2 = D10⋊3(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).15C2 | 320,295 |
(D5×C22×C4).16C2 = D5×C22⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).16C2 | 320,351 |
(D5×C22×C4).17C2 = D10⋊7M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).17C2 | 320,353 |
(D5×C22×C4).18C2 = C4×D10⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).18C2 | 320,565 |
(D5×C22×C4).19C2 = D10⋊5(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).19C2 | 320,616 |
(D5×C22×C4).20C2 = C2×D10⋊1C8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).20C2 | 320,735 |
(D5×C22×C4).21C2 = C2×D10⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).21C2 | 320,1089 |
(D5×C22×C4).22C2 = D10⋊9M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).22C2 | 320,1093 |
(D5×C22×C4).23C2 = C2×D10.3Q8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).23C2 | 320,1100 |
(D5×C22×C4).24C2 = (C22×C4)⋊7F5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).24C2 | 320,1102 |
(D5×C22×C4).25C2 = C2×C42⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).25C2 | 320,1144 |
(D5×C22×C4).26C2 = C2×D10⋊Q8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).26C2 | 320,1180 |
(D5×C22×C4).27C2 = C22×C8⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).27C2 | 320,1409 |
(D5×C22×C4).28C2 = D10⋊10M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).28C2 | 320,1094 |
(D5×C22×C4).29C2 = D10⋊6(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).29C2 | 320,1103 |
(D5×C22×C4).30C2 = C22×C4.F5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).30C2 | 320,1588 |
(D5×C22×C4).31C2 = C22×C4⋊F5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).31C2 | 320,1591 |
(D5×C22×C4).32C2 = C2×D5⋊M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).32C2 | 320,1589 |
(D5×C22×C4).33C2 = C2×D10.C23 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).33C2 | 320,1592 |
(D5×C22×C4).34C2 = D10.11M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).34C2 | 320,1091 |
(D5×C22×C4).35C2 = C4×C22⋊F5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).35C2 | 320,1101 |
(D5×C22×C4).36C2 = C22×D5⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 160 | | (D5xC2^2xC4).36C2 | 320,1587 |
(D5×C22×C4).37C2 = C22×C4×F5 | φ: C2/C1 → C2 ⊆ Out D5×C22×C4 | 80 | | (D5xC2^2xC4).37C2 | 320,1590 |
(D5×C22×C4).38C2 = D5×C2×C42 | φ: trivial image | 160 | | (D5xC2^2xC4).38C2 | 320,1143 |
(D5×C22×C4).39C2 = D5×C22×C8 | φ: trivial image | 160 | | (D5xC2^2xC4).39C2 | 320,1408 |